Experience drives innovation of new migration patterns of whooping cranes in response to global change

Animal migration patterns are changing in response to changes in climate and land use, and these changes could be important for survival of migratory species. These changes, which are adaptations to a changing environment, can happen very quickly, but so far studies have focused on evolutionary changes, which may be too slow to be effective in a rapidly changing world. We used long-term monitoring data of whooping cranes to show that migration patterns can change within an individual’s life and, further, that these changes are initiated by older, experienced birds and then spread to younger birds. This results suggests that maintaining older individuals in a population may be important for effective behavioral adaptation to changing environments.


Read the full article at https://doi.org/10.1038/ncomms12793

Teitelbaum, Claire S., Sarah J. Converse, William F. Fagan, Katrin Böhning-Gaese, Robert B. O’Hara, Anne E. Lacy, and Thomas Mueller. “Experience Drives Innovation of New Migration Patterns of Whooping Cranes in Response to Global Change.” Nature Communications 7 (September 6, 2016): 12793. doi:10.1038/ncomms12793.

Data-driven identification of potential Zika virus vectors

Mosquito-borne diseases are emerging and spreading to new areas each year, often catching us unaware.  Zika virus, for example, although discovered in 1947, was relatively unknown until it spread to the Americas in 2014, where it caused over 100,000 cases in Brazil alone. While we now recognize the public health importance of Zika, we still know little about the ecology of the disease, including which mosquitoes are capable of transmitting it. There are hundreds of mosquito species, and testing all of them is difficult, if not impossible. To identify unknown vectors of Zika, we developed a model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. Together, the ranges of the seven American species encompass the whole United States, suggesting Zika virus could affect a much larger area than previously anticipated. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States.


Read the full article at http://dx.doi.org/10.7554/eLife.22053

Evans, Michelle V., Tad A. Dallas, Barbara A. Han, Courtney C. Murdock, and John M. Drake. 2017. “Data-Driven Identification of Potential Zika Virus Vectors.” eLife 6 (February): e22053. doi:10.7554/eLife.22053.

Experimental demonstration of an Allee effect in microbial populations

Every population has a basic set of requirements needed to survive, like having at least two individuals: a male and female. The concept of a minimum number of individuals needed for population survival or an Allee effect applies beyond reproduction. For example, meerkats cooperate to detect predators. More meerkats means individuals can spend more time foraging, taking care of young, etc. There are many examples for large species, but what about bacteria? We demonstrate that an Allee effect can also impact asexual bacterial populations, which were previously thought to be exempt. This will impact how scientists manage harmful and helpful bacterial populations.


Read the full article at https://doi.org/10.1098/rsbl.2016.0070

R. B. Kaul, A. M. Kramer, F. C. Dobbs, and J. M. Drake. Experimental demonstration of an Allee effect in microbial populations. Biology Letters, 12(4) Apr. 2016. ISSN 1545-7885.

Community 5k in remembrance of John K. Spencer

The OSE Graduate Student Organization is organizing a 5k run/walk this month to honor John Spencer, and to have an opportunity to come together to remember our friend and colleague.

The run will take place Sunday, January 15th, starting at 9:00 a.m. (end time 10:30 a.m.). The race will start at the S16 parking lot adjacent to the Coverdell Building (~552 DW Brooks Drive, Athens), and the course will wind through the UGA campus. See the 5k Run Flyer with Map for more details.

As this is an informal, community 5k, there is no entry fee. However, we recommend a participant donation of $10. Funds raised will be donated to the Upper Oconee Watershed Network in John’s name to promote the protection of urban streams that he was passionate about.

Fall 2016 Brainstorming meeting

Thank you for all those that attended our kick-off meeting. A special thank you to Robbie for his interpretive dance.

Below is the list of potential topics and organizers.

  • GRFP workshops (David V.)
  • UGA Teaching Certificate (Ania M.)
  • “How to” for departmental forms
  • Introduction of Post-docs (Rebecca A.)
  • Skill Shares:
    • How to review a paper (Julie Z.)
    • Intro to GitHub
    • Intro to latex (Reni K.)
    • Making pretty figures (Claire T.  & Cecilia S.)
  • Paper Discussion:
    • Science visualization (Reni K.)

If you have other ideas please sign up for a date or contact Reni!

Movin’ on up

This is the first post on our new domain. I was lazy, and just manually transferred the little content we had from the other page over. As such, I didn’t bring any of the old posts with me, so this is the first post. Hopefully having the official `ecology.uga.edu` address will help make this page more used.

Tad