Microclimate and larval habitat density predict adult Aedes Albopictus abundance in urban areas

The Asian tiger mosquito, , transmits several arboviruses of public health importance, including chikungunya and dengue. Since its introduction to the United States in 1985, the species has invaded more than 40 states, including temperate areas not previously at risk of -transmitted arboviruses. Mathematical models incorporate climatic variables in predictions of site-specific abundances to identify human populations at risk of disease. However, these models rely on coarse resolutions of environmental data that may not accurately represent the climatic profile experienced by mosquitoes in the field, particularly in climatically heterogeneous urban areas. In this study, we pair field surveys of larval and adult mosquitoes with site-specific microclimate data across a range of land use types to investigate the relationships between microclimate, density of larval habitat, and adult mosquito abundance and determine whether these relationships change across an urban gradient. We find no evidence for a difference in larval habitat density or adult abundance between rural, suburban, and urban land classes. Adult abundance increases with increasing larval habitat density, which itself is dependent on microclimate. Adult abundance is strongly explained by microclimate variables, demonstrating that theoretically derived, laboratory-parameterized relationships in ectotherm physiology apply to the field. Our results support the continued use of temperature-dependent models to predict abundance in urban areas.

Full text: https://doi.org/10.4269/ajtmh.19-0220

Evans, M. V., C. W. Hintz, L. Jones, J. Shiau, N. Solano, J. M. Drake, and C. C. Murdock. 2019. Microclimate and larval habitat density redict adult Aedes albopictus abundance in urban areas. The American Journal of Tropical Medicine and Hygiene.

GSS 2019

The 2019 Odum School of Ecology Graduate Student Symposium (GSS) was held on January 25 and 26, 2019. The keynote speaker was Virginia Schutte, Ph.D. ’14. Photos to come soon!  The full program is available here.

About Dr. Schutte: Virginia Schutte is an award-winning science communicator who has both a PhD from the Odum School of Ecology and 5 years of extremely broad science media experience. She has worked with Springer Nature to deliver training workshops and run their digital scientific networking website; she created her own blog for publishing audio, video, and written articles; and she has been pioneering new institution-based science communication techniques since founding the Louisiana Universities Marine Consortium’s Science Media Program in May 2017.

Expand full schedule

Patterns and drivers of fish extirpations in rivers of the American Southwest and Southeast

Effective conservation of freshwater biodiversity requires spatially explicit investigations of how dams and hydroclimatic alterations among climate regions may interact to drive species to extinction. We investigated how dams and hydroclimatic alterations interact with species ecological and life history traits to influence past extirpation probabilities of native freshwater fishes in river basins in the southwestern and southeastern US. Using long-term data from stream and river gages, we related extirpation probabilities of native fishes in both regions to streamflow anomalies, river basin characteristics, species traits, and non-native species richness using binomial logistic regression. Extirpations in the Southwest were highest in lowland mainstem rivers impacted by large dams and in desert springs. Dampened flow seasonality, increased longevity (i.e., delayed reproduction), and decreased fish egg sizes (i.e., lower parental care) were related to elevated fish extirpation probability in the Southwest. Extirpations in the Southeast were most prevalent in upland rivers in species with flow dependency, greater age and length at maturity, isolation by dams, and at a greater distance upstream. Our results confirm that dams are an overriding driver of native fish species losses, irrespective of basin-wide differences in native or non-native species richness. Dams and hydrologic alterations interact with species traits to influence community disassembly, and very high extirpation risks in the Southeast are due to interactions between high dam density and species restricted ranges. Given global surges in dam building and retrofitting, increased extirpation risks should be expected unless management strategies that balance flow regulation with ecological outcomes are widely implemented.

See full text at: https://doi.org/10.1111/gcb.13940

Kominoski, J.S., Ruhí, A., Hagler, M.M., Petersen, Kelly, Sabo, J.L., Sinha, T., Sankarasubramanian, A., & Olden, J.D. (2018). Patterns and drivers of fish extirpations in rivers of the American Southwest and Southeast. Global Change Biology, 24(3), 1175-1185.

Migratory behaviour predicts greater parasite diversity in ungulates

Long-distance animal movements can increase exposure to diverse parasites, but can also reduce infection risk through escape from contaminated habitats or culling of infected individuals. These mechanisms have been demonstrated within and between populations in single-host/single-parasite interactions, but how long-distance movement behaviours shape parasite diversity and prevalence across host taxa is largely unknown. Using a comparative approach, we analyse the parasite communities of 93 migratory, nomadic and resident ungulate species. We find that migrants have higher parasite species richness than residents or nomads, even after considering other factors known to influence parasite diversity, such as body size and host geographical range area. Further analyses support a novel ‘environmental tracking’ hypothesis, whereby migration allows parasites to experience environments favourable to transmission year-round. In addition, the social aggregation and large group sizes that facilitate migration might increase infection risk for migrants. By contrast, we find little support for previously proposed hypotheses, including migratory escape and culling, in explaining the relationship between host movement and parasitism in mammals at this cross-species scale. Our findings, which support mechanistic links between long-distance movement and increased parasite richness at the species level, could help predict the effects of future environmental change on parasitism in migratory animals.

See full text at: https://doi.org/10.1098/rspb.2018.0089

Teitelbaum, C.S., Huang, S., Hall, R.J. & Altizer, S. (2018). Migratory behaviour predicts greater parasite diversity in ungulates. Proceedings of the Royal Society B: Biological Sciences, 285(1875), 1-8.

You know nothing, John Snow.

Cholera affects an estimated 3 to 5 thousand people in Westeros each year. Its spatial distribution is largely characterized by sporadic outbreaks following the onset of Winter. The common dogma in Cholera epidemiology is that transmission spreads through water sources contaminated with the bacterium \textit{Vibrio cholerae}. However, we used species distribution modeling to demonstrate that the incidence of Cholera cases has no association with the distance to any water sources (Sunset Sea, Narrow Sea, Trident, or either Fork). Thus, the original insight gained from famous epidemiologist, John Snow, in the 1800’s is brought into question.

See full text at: http://mvevans89.github.io/docs/targaryen2018.pdf

Targaryen, Daenerys M.D (2018). You know nothing, John Snow. Proceedings of the Royal Society of Westeros, 12:1-3.

UPDATE: April fool!

Mucus-net producing snails modify water flow and molecular transport potential over corals and coral-algal interactions

Interaction modifications arise when a third species alters the strength and direction of a pairwise interaction. One way in which an interaction modifier can influence an interaction is through changing the physical environment and creating conditions that favor one species over another. On coral reefs, coral-algal competition is a wide-spread phenomenon that can be modified by water flow. Additionally, sessile (stationary), net-producing vermetid gastropods can be ubiquitous and known to negatively affect coral growth and survival. Although the putative mechanism underlying the snail’s effect is the mucus net, how the net may affect corals was unknown. In our paper, we showed that the mucus net modified water flow and the thickness of the diffusive boundary layer (the region in which molecular transport occurs) over corals and over coral-algal interactions. Our results suggest that the negative effects of vermetids on corals are due to the trapping of noxious conditions over coral surfaces, which likely intensifies competition between corals and algae.

See full text at: https://doi.org/10.1007/s00442-018-4091-9

Brown, A.L. & Osenberg, C.W. (2018). Vermetid gastropods modify physical and chemical conditions above coral–algal interactions. Oecologia (online early).

Photos from GSS 2018

The Odum School of Ecology’s 2018 Graduate Student Symposium was a success, with over 40 talks and posters presented. Thanks to everyone who helped plan, support, and attend the event!

Native Lake Sturgeon eat more fish (and sooner) in response to Round Goby invasion: A silver lining to an invasive cloud?

Species invasions are ubiquitous in ecosystems across the world, and the Laurentian Great Lakes ecosystem is no exception. Round Goby, a small benthic fish species, have invaded each of the Great Lakes, spreading to Lake Ontario by 2002. The Great Lakes are home to a number of native fish species that are imperiled and of high conservation interest. One of these is the Lake Sturgeon, of which relatively few relict populations still persist, and for which population densities are far below historical records. This paper presents evidence that invasive Round Goby in Lake Ontario are not only eaten by Lake Sturgeon, a large-bodied benthic consumer and putative invertivore, they’ve allowed Lake Sturgeon to shift feeding ecology toward increased predation on fish at smaller size and younger age. The net effect of Round Goby on Lake Sturgeon in this system is still poorly understood: the effects of other species interactions between Round Goby and Lake Sturgeon, and the indirect effects of shifting food web structure on Lake Sturgeon are unknown. However, the shift in feeding ontogeny we document may actually have a positive effect on Lake Sturgeon access higher-quality prey (namely Round Goby) at smaller size and younger age; thereby eating more fish, and sooner. This highlights the complexity of ecosystem responses to species invasions. Though Round Goby have had a strong negative overall effect on the Great Lakes system, the shift in Lake Sturgeon feeding ecology we observe may have a positive effect on this native species.

See full text at: https://link.springer.com/article/10.1007/s10530-017-1376-6/fulltext.html

Jacobs, G. R., Bruestle, E. L., Hussey, A., Gorsky, D., & Fisk, A. T. (2017). Invasive species alter ontogenetic shifts in the trophic ecology of Lake Sturgeon (Acipenser fulvescens) in the Niagara River and Lake Ontario. Biological Invasions, 10(5), 1533–1546. https://doi.org/10.1007/s10530-017-1376-6.

Photos from the 2017 Graduate Student Symposium

GSS 2017 was on January 27 and 28. Here are a few photos of the talks, posters and activities from the weekend.