Congratulations, Lexi! Here is the abstract of her thesis, entitled Invertebrate herbivory of understory trees in the Georgia Piedmont in response to soil warming:
As the global mean surface temperature increases, changes in biogeochemical cycling have the potential to have cascading effects on plant and invertebrate interactions. Previous warming studies have primarily been conducted in recently glaciated, more fertile soils, and the response of plant and invertebrate interactions to warming is unclear in lower latitude, less fertile soils of the Georgia Piedmont. In this study, I examined leaf and soil chemistry (%N, C:N) and herbivore damage (% leaf area consumed) from understory tree seedlings of the Georgia Piedmont. Carbon and nitrogen foliar content and invertebrate herbivory did not respond to warming in any year, but there were interactive effects of temperature and species. Overall, warming did not have an indirect effect on plant-herbivore interactions, which is likely due to Piedmont soils containing less available nitrogen. However, species-level variation in response to warming has implications for forest composition changes.